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ABSTRACT 

The optimal return function for a Borel measurable gambling problem with a 
bounded utility function was shown by Strauch (1967) to be universally 
measurable when the problem is leavable in the sense that the gambler may 
terminate play at any time. The same is shown here for the more general class 
of nonleavable problems. 

I. Introduction 

The gambling theory of Dubins and Savage [8] takes place in a very general 
finitely additive framework in which a player is not restricted to measurable 
strategies. Thus the optimal return function V assigns to each fortune x the 
supremum of the utilities u(a) taken over all strategies a available including 
nonmeasurable ones. Our main concern in this paper will be Borel and, more 
generally, analytic, gambling problems which are measurable and countably 
additive in a sense to be made precise in the next section. For such problems, it 
is natural to inquire, as Dubins and Savage did, whether the function V is 
measurable and whether it equals the function VM which assigns to each x the 
supremum of u(a) taken over only the measurable g available at x. 

These questions were first considered for the class of  leavable problems in 
which a player can effectively stop at any fortune x because the Dirac delta 
measure O(x) is available there. Dubins and Savage themselves gave positive 
answers in the leavable case under assumptions of compactness and continuity 
[8, Theorem 2.16.1 ]. Strauch [ 18] formulated the notion o fa  Borel measurable 
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gambling problem and again found positive answers. Later these results were 

generalized to the class of  analytic gambling problems by Dellacherie, Meyer 

and Traki [7, 13] and by Dubins and Sudderth [9]. 

The major result here is that V is measurable and V = VM for analytic 

problems in the general, nonleavable case. Another result is a new characteri- 

zation of V and a transfinite inductive scheme for calculating it. 

2. Preliminaries 

Let (F, F, u) be a gambling problem in the sense of Dubins and Savage [8]. 

That is, the fortune space F is a nonempty set; the gambling house F is a 

mapping which assigns to each x ~ F a nonempty set, F(x), of finitely additive 

probability measures defined on all subsets o fF ;  and the utility function u is a 

bounded, real-valued function with domain F. A strategy a available at x is a 

sequence a0, trl, • • • such that a0EF(x) and, for n > 1, an is a mapping with 

domain F n such that tr~(x~ . . . .  , x , ) ~  F(x~) for every (x~ . . . .  , x ~ ) ~ F  ~ (8, 

pp. 11-12]. Dubins and Savage show [8, section 2.8] that every strategy a 

determines a finitely additive probability measure, also denoted by a, on the 

algebra of clopen subsets of  the history space H = F × F × • • .. (Here F is 

given the discrete topology and H the product topology.) A gambler with initial 

fortune x may choose any a available at x and the coordinate process 
h = (hi, h2 . . . .  ) on H with distribution tr is then thought of as the gambler's 

sequence of fortunes. 
Let us recall briefly the two general approaches taken by Dubins and Savage. 

In the first approach, a player starting at x E F selects a strategy a available at x 

and a stop rule t [8, p. 20]. The pair z~ = (a, t) is a policy available at x and the 

utility of  n is 

u(zt) = u(a, t) = f u(h,)da, 

the expected utility under a at the time of stopping. Here ht is defined by the 

rule ht(h) = ht(h) for h ~ H .  The function u(ht) is a bounded, finitary function 

on H and its integral under tr is well-defined in the finitely additive theory (cf. 

the discussion surrounding formula (2.9.4) on pages 22 and 23 of [8]) even if u 

is not measurable in a conventional sense. The optimal return function is 

defined to be 

(2.1) U(x) = maximum of sup u(rt) and u(x), 
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where the supremum is over all rt available at x [8, section 2.10]. 
In the second approach, a player starting at x selects a strategy a available 

there as before but is not allowed to stop. Rather the utility of a is defined to be 

u(a) = infsup u(a, t) 
s t ~ s  

= limt sup u(a, t), 

where the "lim sup" is taken over the directed set of stop rules t. The optimal 
return function is now defined as 

(2.2) V(x) = sup u(a) 

where the supremum is over all tr available at x [8, pp. 39-41]. 
The second approach essentially includes the first. This is because the return 

function U for a problem (F, F, u) is equal to the return function correspond- 
ing to Vfor the problem (F, F', u) where F'(x) = F(x) U {5(x)} for every x [8, 

corollary 3.3.3.]. 
Assume from now on that F is a Borel set by which we mean a Borel subset of  

a complete, separable metric space. Let ~ ( F )  be the collection of countably 
additive probability measures defined on the sigma-field B(F) of Borel subsets 
of F. Then ~ ( F )  is also a Borel set when equipped with the usual weak 
topology. (See, for example, Parthasarathy [15, chapter 2] or Dellacherie and 

Meyer [7, chapter III, 60 to 62].) Next assume that, for every x E F and every 

~, ~F(x) ,  the measure 7 is countably additive when restricted to B(F) and, for 
simplicity, identify 7 with its restriction to B(F). Assume further that F is 
analytic in the sense that the set {(x, 7): 7EF(x)}  is an analytic subset of 
F X ~(F) .  (Recall that an analytic set is the continuous image of a Borel set.) 
Finally assume that the utility function u is bounded and upper analytic in the 
sense that {x : u(x) > a } is an analytic set for every real number  a. A problem 
(F, F, u) satisfying the assumptions of this paragraph is called analytic. The 
class of such problems includes the Borel measurable problems of Strauch 
[ 18] and is essentially the same as the class studied by Dellacherie and Meyer 

[7] except that they assume leavability and allow u to be unbounded above. A 
related class of dynamic programming problems was investigated by Black- 
well, Freedman and Orkin [1]. 

A strategy tr = (a0, a~, . . . )  is called measurable if, for n = 1, 2 , . . . ,  the 
mapping a,:F"---, ~(F) is universally measurable; i.e. measurable with 
respect to the completion of every probability measure on B(F"). Every 
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measurable strategy tr determines a countably additive probability measure 

p(tr) on the sigma-field B(H) = B(F) × B(F) × •. • of Borel subsets of  H. 

That is, the p(a)-marginal distribution of h~ is a0 and, for every n > 1 and 

(x~ . . . . .  xn )EF  n, the p(a)-conditional distribution of hn+~ given h i =  

x~ . . . . .  hn = x~ is a~(x~ . . . . .  x~). For simplicity, tr is written for p(tr) below. 

Suppose tr is measurable and t is a Borel stop rule. Since u is upper analytic, 

the function u(h,) is universally measurable. Thus ~u(h,)da can be defined in 

the conventional countably additive fashion as well as in the finitely additive 

theory of [8]. However, these two definitions agree [20, corollary to Theorem 

2.1 ]. It is also natural to consider ff(tr) = limt sup u (a, t) where the "lim sup" is 

taken over Borel measurable stop rules t. However, a(o) = u(a) [20, Theorem 

3.2]. 
For x ~ F, let ~(x) be the collection of all measurable strategies a available at 

x and define the optimal return from measurable strategies VM(x) as 

VM(x) = s u p { u ( a )  : 

Here is our main result. 

THEOREM 2.1. I f  (F ,F ,  u) is analytic, then V =  Vu and V is upper 

analytic. 

Most of the paper is devoted to the proof which relies, in part, on a similar 

result about U. 
A policy n = (a, t) is measurable if tr is measurable and the stop rule 

t : H ~ { 1, 2 , . . . }  is Borel measurable. For each x E F ,  let H(x) be the collec- 

tion of measurable policies available at x and define 

UM(x) = max {u(x), sup{u(rt): rt ~H(x)}}. 

The next result was proved by Strauch [ 18] for Borel problems and by Dubins 

and Sudderth [9, section 6] for analytic problems. The essential elements of the 

proof are also in Dellacherie and Meyer [7] and a generalization is in Maitra, 

Purves and Sudderth [11, Theorem 4.8]. 

THEOREM 2.2. If(F, F, u) is analytic, then U = UM and U is upper analytic. 

The proof of Theorem 2.1 will also rely on the definition by induction over 
the ordinals of  a collection of  functions which decrease to V. Define first an 

operator T which assigns to every bounded function w : F- - -R the bounded 

function Tw : F ~ R where, for x ~ F, 
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(2.3) (Tw)(x)  = sup w(rt) 

and the supremum is over all policies rt available at x. As was mentioned 
above, w(n) - -  Iw(ht)d~ is well-defined even for nonmeasurable w, a, and t. 

Next define 

(2.4) Q0 = Tu 

and, for every positive ordinal ~, let 

(2.5) 

Finally, set 

(2.6) 

Q¢ = T(u ^ (inf{Q, : r /<  ~})). 

Q = inf Qe. 

Similarly defined systems of functions were considered by Dellacherie [4]. 
The proof of Theorem 2.1 is presented in sections 3 through 6. An essential 

ingredient of the proof is a theorem of Moschovakis from effective, descriptive 
set theory. This theorem is explained in section 3 and then applied in section 4 
to show that Q = Qo,, and Q is upper analytic. The fact that T(u ^ Q) > Q is 
also established and this fact is exploited in section 5 in order to construct 
measurable strategies with payoff arbitrarily close to Q. Thus VM > Q. On the 
other hand, V < T(u)  = Qo and it is shown by induction in section 6 that 
V < Q¢ for all ~. Hence, V < inf Q~ = Q. Obviously, VM < V so it follows that 
V = Vu = Q. A characterization of V is given in section 7 and section 8 has 
some remarks and open questions. 

3. A theorem of Moschovakis 

The proof of Theorem 2.1 depends on a result from the theory of inductive 
definability. To formulate the result, let Z be a set and • be a mapping from 
subsets of Z to subsets of Z. Say that • is a monotone operator if, whenever 
E~ __. E2 _c Z, then ~(E~)___ ~(E2). Define the iterates of ~ by transfinite 
induction as follows: 

(3.1) q~' = ~ (  ~U q~) 

where ~ is any ordinal. So, in particular, q)0 = ~(~). It is easy to verify that ~ ,  
the least f ixed point of ~,  is given by U {~" : r /<  x}, where x is the least 
cardinal greater than the cardinality of Z. 
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Suppose Z is a Borel set and ~ is a monotone operator on Z. Say that el) 

respects coanalytic sets if, whenever Y is a Polish space and C is a coanalytic 

subset of Y × Z, then the set 

(3.2) C* = ((y, z ) ~  Y X Z:  z ~O(C,)} 

is also coanalytic. (Here Cy = {z: (y, z )EC}. )  

THEOREM 3.1. Let rD be a monotone operator on a Borel set Z and suppose 
respects coanalytic sets. Then 

(a) • K is a coanalytic subset of  Z,  

(b) ~ = ~ ' ° , =  U ~ .  
~<rOl 

Part (a) is a special case of a very general result of  Moschovakis [14, 7C.8, 

p. 414]. Part (b) is not stated explicitly in [14], but it can be deduced from 

results there as was done by Louveau [ 10]. A related result is in Dellacherie [4]. 

4. The function Q 

The following theorem states the properties of Q we will need to prove 

Theorem 2.1. 

THEOREM 4.1. The function Q equals Q,o,, is upper analytic, and satisfies 
the functional equation 

(4.1) Q = T(u ^Q). 

The proof will use several lemmas. The first concerns the operator T defined 

in (2.3). Notice that Tw differs from the return function U for the problem 
(F, F, w) only in that the maximum is not taken with the utility function w. 

Nevertheless it is not difficult to use Theorem 2.2 to establish an analogous 

result for Tw. 

LEMMA 4.2. I f  w is bounded and upper analytic, then so is Tw and 

(Tw)(x) = sup (w(rt) : rt Eli(x)},  

for every x E F. 

PROOF. Consider the problem (Fo,~o, Uo) where F o = F X { O ,  1); 

Uo(X, 0) = inf w, Uo(X, 1) = w(x) for x E F; F0(x, 0) -- ['0(x, 1) -- 
{7 X t~(1) : },EF(x)} for x ~ F  (i.e. the first coordinate moves according to a 
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gamble available in F and the second moves to 1). It is easy to check that 

(Tw)(x) = Uo(x, 0). The lemma then follows from Theorem 2.2. [] 

Here is an immediate corollary of Lemma 4.2 and (2.5). 

COROLLARY 4.3. For 0 <= ~ < 031, Q~ is upper analytic. 

The previous lemma permits us to calculate Tw by taking the supremum just 

over the class of measurable policies n = (a, t). The next lemma records a nice 

result of  Strauch [ 1 8, Theorem 2] which is then used to reduce the class even 

further. 

LEMMA 4.3. There is a countable set C of Borel measurable stop rules such 
that, for every Borel stop rule t and every probability measure a E ~(H), there 

exist fi, t 2 . . . .  in C satisfying a[lim, tn = t] = 1. 

For each x ~ F ,  let fI(x) be the collection of policies (a, t) in II(x) such that 

tEC .  

LEMMA 4.4. For w bounded and upper analytic and x E F, 

(Tw)(x) = sup{w(rt) : r~ El i (x) ) .  

PROOF. Let n = (a, t)~I-I(x). By Lemma 4.3 there exist t, E C such that 

t, ~ t a-almost surely. So t, eventually equals t and, hence, w(h,.)---w(ht) 

a-almost surely. Thus, by the dominated convergence theorem, 

w(a, t )= f w(h,)da = lim f w(ht.)da = lim w(a, t,). 
d n . 3  , [] 

It is convenient to use Lemma 4.4 to define a new gambling house r" for 
which the operator T corresponds to the one-day optimal return function 

(4.2) (I"w)(x) = sup{Tw : 7 E ~'(x)}. 

To define 1 ~, use ? = ah,-~ to denote the distribution of ht under a and, for 

x ~ F, set 

(4.3) l~(x) = {7: ( 3 (a, t)E~'(x))(7 = aht-')}. 

The next lemma records an obvious fact for future reference. 

LEMMA 4.5. The operators T and ~'~ agree on bounded, upper analytic w. 

The last lemma of this section establishes that ~' is an analytic house. 

Enumerate the elements of  C as rt, r2 . . . . .  
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LEMMA 4.6 F o r k =  1,2 . . . . .  theset 

Ak = {(X, 7, a ) E F  × ~ ( F )  × ~ ( H )  : a EZ(x),  7 = crhr-~ I ) 

is analytic and so is the set {(x, 7): 7 ~ I"(x)}. 

PROOF. That Ak is analytic follows from the facts that ((x, a) : a E Z(x)} is 
an analytic subset of F × ~ ( H )  by a theorem of Dellacherie [6, Th6or~me 3] 
(cf. also Sudderth [ 19, Theorem 2.1 ]) and that the mapping a --, ahr71 is Borel. 

Hence, the projection of Ak onto F × ~(F) ,  namely the set 

(4.4) l"k = ((x, 7 ) : (  3 a ~Z(x))(7 = ah~)} ,  

is also analytic. Consequently, 

((x, 7) : 7 t ' (x)) = U 
k 

is analytic too. [] 

Assume for the rest of this section that 0 £ u < 1. Since u is bounded,  there 
is no real loss of generality. Notice that the function Q~ now takes values in the 
unit interval also. 

The completion of the proof  of Theorem 4.1 will rely on Theorem 3.1. To 
apply the latter theorem, take I to be the unit interval, set Z equal to F X I and 
define • on the power set of  Z by 

(4.5) O(E) = {(x, a ) ~ Z :  sup{(7 × 2)*(E c ¢q G):  7 E~'(x)} < a}, 

where 2 is Lebesgue measure on I,  (7 X 2)* is the outer measure associated 
with the product measure 7 × 2, and G = {(x, a ) :  u(x )>  a}. 

LEMMA 4.7. ~ is monotone and respects coanalytic sets. 

PROOF. It is trivial to check that • is monotone.  So let Y be a Polish space 

and let C be a coanalytic subset of Y × Z. To see that the set C* of (3.2) is 
coanalytic, define a Borel Markov kernel K on ~ ( F )  × B(Z) by K(7, B) = 

(7 × 2)(B). The mapping 

(y, 7 ) - -K(7 ,  G n 

is upper analytic since it is the composition of  the Borel mapping 

(Y, 7 ) ~  O(Y) X K(7, .) 

from Y X ~)(F) into ~)(Y X Z) with the upper analytic mapping 
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I.t --.ix((Y X G) A C c) 

from x z)  into [0, 1] (cf. [1], [7] or [11]). Consequently, the set 

C* = {(y, x, a) : K(7, G M C~) < a for all 7 E~'(x)} 

is coanalytic. [] 

To see how the operator • is related to the operator T, let w : F ~ [0, 1 ] and 

define 

E(w) = {(x, a ) :  w(x) < a}. 

LEMMA 4.8. I f  w is upper analytic, then ~(E(w)) = E(T(u ^ w)). 

PROOF. For 7 E ~ ( F )  and E = E(w), 

(7 × 2)( Ec • G) = f 2((E c O G)x)7(dx) 

f (w ^ u)(x)7(dx). 

The result follows from (4.5) and Lemma 4.5. [] 

Now notice that 

~0 = ~(~) = {(x, a) : 7u < a for all 7 E ~'(x)} 

= {(x,  a ) :  ao(x) < a }  = E(Qo), 

so that, by Corollary 4.3, Lemma 4.8, and induction 

• ~ = {(x,  a) : Q~(x) < a }  = E(Q¢) (4.6) 

for 0_-< ~ <to~. 

PROOF OF THEOREM 4.1. Let w = inf¢<,o, Q¢ 

{(x, a)" w(x) < a}. By (4.6) and Theorem 3.1(b), 

(4.7) E = U ~¢ = ~ .  
~<to I 

and E = E ( w ) =  

By Theorem 3.1 (a), ~ is coanalytic and, hence, w is upper analytic. Apply 

to (4.7) and use Lemma 4.8 to obtain 

ep~ = {(x, a)" T(u ^ w)(x) < a } 

= ((x ,  a)" Qo~,(x) < a} .  
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Thus Qo~, is upper analytic. Apply Lemma 4.8 again, this time with w = Qo,,, to 

see that T(u ^ Q~,,) = Qo,, and, hence, Q = Qo,,. [] 

5. The proof that VM > Q 

To show that VM dominates the function Q, it suffices, by Theorem 4.1, to 

establish the following result. 

THEOREM 5.1. I f  L : F --" R is bounded, upper analytic, and T(u ^ L) > L,  

then VM > L. 

The idea of the proof is to construct, for a given x, a strategy a ~ E(x) whose 

utility u(o) is almost as large as L(x). The construction will be based on two 

lemmas. 
To state the first lemma, define a measurable family o f  policies to be a 

mapping 7t which assigns to each x a policy 7t(x) = (#(x), t(x)) E H(x) in such a 

way that t(x) (h) is jointly universally measurable in x and h and, for n > 0, 

~(x). (h, . . . . .  hn) is jointly universally measurable in x and (h, . . . . .  h~). Say 

that the family rc e-conserves L if 

(u a L)(n(x)) > L(x)  - e 

for all x. 

LEMMA 5.2. For every e > O, 
which e-conserves L. 

there is a measurable family o f  policies n 

PROOF. By Lemma 4.5 and the hypothesis T(u A L) >= L,  

i~'l(u ̂  L) >-_ L. 

SO, by Lemma 6.4 of Dubins and Sudderth [9], there is a universally measur- 

able mapping y from F to ~ ( F )  such that 7(x)Ef ' (x)  and 7(x)(u AL)  > 

L ( x ) - e  for all x E F .  By the definition of f', 7(x) corresponds to the 

distribution of h,x) under some policy n(x) in I~l(x). It remains to select such a 

policy measurably. 

Let Ak be the analytic set of  Lemma 4.6 and use the Yankov-Von Neumann 

selection theorem (cf. [1] or [14]) to get a universally measurable mapping 

gk : F × ~(F)---, ~'(H) 

such that 

(X, 7, gk( X, 7))~A~ 
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for every (x, ~,) in l"k, the projection Of Ak onto F × ~'(F). Then, for x ~ F ,  let 

k(x)  be the least k such that (x, " / (X))~'k  and, for k = k(x) ,  define 

t (x)  = rk, (r(x) = gk(x, 7(x)). 

Now let n(x) = (t~(x), t(x)) for each x. By construction, t (x)(h) is jointly 

universally measurable in x and h, and t~ is a universally measurable mapping 

from F to ~(H) .  It follows from Lemma 2.2. ol ~ [I 1] that the mappings 

~r(x) , (h~, . . . ,  h,) can be chosen to be universally measurable. [] 

Now fix x o E F a n d  t > 0. To prove Theorem 5.1, it suffices to find a ~E(Xo) 

such that 

(5.1) u(a) > L(xo) - e. 

To obtain a, first choose e0, e~,. . ,  to be positive numbers such that Ze, < e. 

Then, for each n, use Lemma 5.2 to get a measurable family of policies 

n. = ( a " ,  t,) which e.-conserves L. We will take a to be the sequential 

composition o f  the n, starting f rom Xo. Intuitively, a follows ao(Xo) up to time 

to(Xo), then switches to a~(hto(Xo)) and so on. To be precise, first define stop rules 

So < Sl < • • • by setting 

so(h) = to(Xo)(h ), 

s, + l(h ) = s,(h ) + t, + t(hs.)(hs.+ t, hs,+2 . . . .  ). 

(Recall that hi (h)= h,~h) for a stop rule t and h ~ H . )  Plainly the s, are 

universally measurable. Now let 

ao = a°(X0)o, 

a~(h~ . . . .  , h,) = a°(Xo),(ht, . . . , h,) i fn  <so(h), 

= ak+~(h,,),_,,(h~k+~,..., h,) ifsk(h) <= n <sk+~(h), 

where h = ( h l , . . . , h ,  . . . .  ). 

The related notion of a "composite policy" is discussed in [8, p. 22].) 

The next lemma will establish (5.1) and complete the proof of Theorem 5.1. 

LEMMA 5.3. Let  x E F,  let no, n~, . . . be measurable families o f  policies and 

let a be the sequential composition o f  the n, at x .  Assume Co, e l , . . ,  are positive 

numbers such that, for  every n, n, e,-conserves L .  Then, for  every stop rule s, 

there is a stop rule t > s such that 

(5.2) u(a, t) >= L ( x )  - Et , .  
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PROOF. The proof is by induction on the structure ofhs [8, sections 2.7 and 

2.9] and the inductive hypothesis is taken to include all strategies a con- 

structed by sequential composition. 

If hs has structure one, then s = 1 < to(X) and t = to(x) will satisfy (5.2). 

Suppose hs has structure a and assume the inductive hypothesis for stop 

rules s' for which h,, has structure smaller than a. Define the stop rule t as 

follows: If s(h)  < to(h), let t (h)  = to(h). If s ( h ) >  to(h), let $(h) be the con- 

ditional stop rule s[Pto(h)] = s[hl . . . .  , hto] which is defined by 

~(h )(h') = s(hl, . . . , hto, h~, hl, . . .) - to(h). 

Now the structure of h~<h) is smaller than a (cf. [8, Theorem 2.9.3]). Apply the 

inductive hypothesis to the conditional strategy #(h) = a[p,o(h)], which is the 

sequential composition of n~, n2 . . . .  at ht°, to obtain a stop rule i(h),  depending 

only on (~(h), ~(h)), such that t (h)  > ~(h) and 

Then set 

u((r(h ), {(h )) > L(h,o) - (t~ + e2 + . . . ) .  

t (h)  = to(h) + {(h)(h,o+l, ht0+2 . . . .  ). 

Finally, condition on Pto tO get 

u(a,  t) = f ~=to U(h,o)da + f ~>to U((r, {) da 

> f (u A L)(h,o)da - (el + t2 + "" ") 

= (u A L)(n0(x)) -- (el + e2 + " ") 

>= L ( x )  - (to + el + • " "). [] 

6. The proof that Q > V 

It suffices to show that 

(6.1) V <  Q~ 

for every ordinal number r/. The proof is by induction over the ordinals. 

For every strategy tr available at x, 

u(a)  < sup u(a ,  t) < Qo(x). 
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Take the supremum over tr to see that V =< Q0. 
Now assume (6.1) holds for every r / <  ¢. Let e > 0 and let tr be a strategy 

available at x. By a result of Dubins and Savage [8, Theorem 3.7.1 ], there is a 
stop rule to such that for every stop rule t > to, 

a(h : u(ht) > V(ht)  + e)  < e. 

(For every stop rule t, the set A t = (h  : u(ht)  >-_ V(ht)  q- e )  is determined by 
t ime t and is, therefore, finitary [8, Theorem 2.7.1 ]. So each At is in the domain 

of every tr.) Thus, for t > to, 

u(a, t) <= (u ^ V)(a, t) + e(1 + 2supl u I) 

<-_ T(u A inf Q~) + e(l + 2supl u I), 

= Q~(x)+ e(1 + 2suplu l ) ,  

where the second line is by the inductive assumption and the third by (2.5). 
Since e is arbitrary, u(a) is no larger than Q~(x). Consequently, V(x) is also 

bounded above by Q~(x). 
This completes the proof  that Q > V. As ment ioned in section 2, it now 

follows that V = VM = Q and Theorem 2.1 is immediate  from Theorem 4.1. 

7. A characterization of V 

No assumptions of  measurability or countable additivity are needed for the 
results of this section. So let (F, F, u) be a classical gambling problem in the 
sense of [8]. Dubins and Savage [8, pp. 41-42] characterized V as the least 
excessive function w such that w(a) > u(a) for every strategy a available. Here 
is a new characterization. 

THEOREM 7.1. 

such that 

The function V is the largest, bounded function w : F ~ R 

(7.1) T(u ^ w) = w. 

The proof  uses two lemmas which may have some independent  interest. 

LEMMA 7.2. The function Q is the largest, bounded function w : F ---, R such 

that (7.1) holds. 

PROOF. It is clear from (2.5) that Q¢ < Q, when ~ =< ~/. Thus, i fx  is the least 
cardinal greater than the cardinality of  R e, then there is an ordinal a less than x 
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such that Q~ = Q~+I and Q~+I = T(u ^ Q~). Therefore Q --- Q~ is a solution of 

(7.1). 

Now let w be any solution of (7.1). Then Q0 = Tu >-_ T(u ^ w) = w. And, if 

Q, >___ w for all q < ~, then 

( ] >  T ( u ^ w ) =  w. Q ¢ = T  u ^ i n f Q ,  = 
q<~ / 

So Q = inf Q¢ > w. [] 

LEMMA 7.3. The functions Q and V are the same. 

OUTLINE OF PROOF. This was proved above for measurable problems. 

However, the proof in section 6 that Q > V is completely general. Also, it is 

easy to adapt the proof in section 5 that VM _>- Q to show V >_- Q in general. 

(Given x E F  and e > 0 ,  one constructs tr available at x such that 

u(tr) > Q(x) - e. The construction is similar to that in section 5, but some- 

what simpler because there are no measurability concerns.) [] 

The theorem is immediate from the two lemmas. A result related to 

Theorem 7.1 is discussed by Dellacherie [4, Th6or~me 27]. 

8. Remarks 

It seems likely that the results established here for a bounded utility function 

u are also true for u > 0. However, Theorem 2.1 cannot be proved for u < 0. 

As was shown in [ 11 ], the statement that V = I'M is undecidable for u < 0 even 

in the special case when F is leavable. 
If u is bounded, then, for every strategy a, 

u(a) = f u*da 

where u*(h) = lim sup u(h,,) as was shown by Chen [3] and Sudderth [20]. (For 

nonmeasurable a, the integral above was defined by Purves and Sudderth 

[17].) Thus Theorem 2.1 says that, for a measurable problem, the supremum 

over tr of  the integral of  u* with respect to a is the same whether taken over all tr 
or only measurable tr available at x. Does this remain true when u* is replaced 

by an arbitrary bounded, Borel measurable function g? Some further infor- 

mation about this question is in [ 12]. 
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